Chemicals and waste

The management of chemicals and waste is a crucial aspect of achieving the Sustainable Development Goals (SDGs), a collection of 17 interlinked global goals designed to be a "blueprint to achieve a better and more sustainable future for all" by 2030. These goals were set up in 2015 by the United Nations General Assembly and are intended to be achieved by the year 2030. They address global challenges, including those related to poverty, inequality, climate change, environmental degradation, peace, and justice.

SDG 12, which focuses on Responsible Consumption and Production, is directly related to the management of chemicals and waste. This goal aims to ensure sustainable consumption and production patterns, which includes the environmentally sound management of chemicals and waste. The mismanagement of these elements can have severe environmental and health impacts, thus undermining the objectives of SDG 12.

One of the critical links between chemical and waste management and the SDGs is to human health, as outlined in SDG 3, which aims to ensure healthy lives and promote well-being for all at all ages. Improper handling and disposal of chemicals and waste can lead to pollution and contamination, which can have direct adverse effects on human health. This includes increased risks of diseases, long-term health conditions, and impacts on the well-being of communities, especially those living in close proximity to waste disposal sites or industrial areas.

The impact of waste management also extends to climate change, addressed in SDG 13. Excessive waste generation, particularly organic waste in landfills, contributes to the production of greenhouse gases like methane, a potent contributor to global warming. Additionally, the production and disposal of plastics, electronic waste, and other non-biodegradable materials contribute significantly to carbon emissions. Effective management and reduction of waste are essential to mitigate climate change impacts.

The preservation of life below water (SDG 14) and life on land (SDG 15) is also heavily influenced by how chemicals and waste are managed. Pollution from chemicals and waste can severely impact aquatic ecosystems, harming marine life and biodiversity. Similarly, terrestrial ecosystems and wildlife are at risk from land pollution and habitat destruction caused by improper waste disposal and chemical spills.

Furthermore, SDG 8, which focuses on promoting sustained, inclusive, and sustainable economic growth, full and productive employment, and decent work for all, is impacted by the management of chemicals and waste. Workers in industries dealing with chemicals and waste are often exposed to hazardous conditions. Ensuring their safety and health is a key aspect of achieving this goal. Moreover, sustainable waste management can create new job opportunities and contribute to economic growth through recycling and waste-to-energy sectors.

The effective and environmentally sound management of chemicals and waste is not only essential for achieving SDG 12 but also intersects with several other SDGs. It is a fundamental component of sustainable development, impacting human health, climate change, biodiversity, and economic growth. Addressing these challenges requires a holistic approach, encompassing strict regulatory frameworks, technological innovation, public awareness, and international cooperation to ensure a sustainable future.

Microplastics are emerging pollutants in aquatic and terrestrial environments. In the last years, several case studies and reviews have been published about microplastics in freshwater and marine environments. However, no standardized methods are available for sampling and sample preparation. Based on literature research, this review presents different techniques and methods for sampling as well as the preparation of microplastic samples from water, sediment and biota of freshwater and marine environments.
Tire materials are a significant proportion of the (micro)plastics in the environment that until today have been clearly overlooked. These materials are released into the environment, either unintentionally as an abrasion product from tire wear, that reaches the environment via road runoff, or intentionally as, for example, shredded “tire crumble rubber” used as filling material for playgrounds.
Lithium ion batteries (LIB) continue to gain market share in response to the increasing demand for electric vehicles, consumer electronics, and energy storage. The increased demand for LIB has highlighted potential problems in the supply chain of raw materials needed for their manufacture. Some critical metals used in LIB, namely lithium, cobalt, and graphite are scarce, are not currently mined in large quantities, or are mined in only a few countries whose trade policies could limit availability and impact prices.
This book chapter addresses goals 9, 12 and 15 by looking at how green nanotechnology can facilitate sustainable methods leading to reduced environmental impacts, improved conservation, and the protection of resources and human health.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 112, March 2019
High amounts of macro and microplastic have been reported in rivers, lakes and seas. However, links between the observed pollution and their sources remain unclear. This study aims to clarify these links in the Lake Geneva basin by analysing each step of the local plastic life cycle. Two distinct approaches have been compared: (i) a top-down approach based on modelling socio-economic activities, plastic losses and releases into the lake, and, (ii) a bottom-up approach based on extrapolating plastic flows into the lake based on field measurements from 6 different pathways.
Microplastics (MP) provide a unique and extensive surface for microbial colonization in aquatic ecosystems. The formation of microorganism-microplastic complexes, such as biofilms, maximizes the degradation of organic matter and horizontal gene transfer. In this context, MP affect the structure and function of microbial communities, which in turn render the physical and chemical fate of MP. This new paradigm generates challenges for microbiology, ecology, and ecotoxicology.
N-type Mg3Sb2-based Zintl compounds have attracted considerable interest in recent years for their high thermoelectric performance. Mg3Sb2-based compounds inherently have p-type transport properties because of the presence of intrinsic Mg vacancies. Therefore, eliminating Mg vacancies and increasing the electron concentration are crucial for achieving high-performance n-type Mg3Sb2-based materials. The addition of excess Mg in the initial composition and the doping of chalcogens (Te, Se, and S) at the Sb site have been the primary methods used to date.
Elsevier,

Materials Today Sustainability, Volume 3-4, March 2019

The built environment is responsible for large negative ecological impacts due in part to the vast amount of materials used in construction. Concurrently, construction and demolition activities result in vast amounts of materials being buried, burnt, and dumped. It is essential therefore to analyze the impact of building materials acquisition, use, and transformation on the ecosystems people inhabit and rely upon for well-being. Typically, this is examined in terms of material use, energy use, and emission of pollutants including greenhouse gases.

Characterising microplastics based on spectroscopic measurements is one key step of many studies that analyse the fate of microplastics in the environment. Over the years, many potential sources of error were identified, which can be seen by the implementation of anti-contamination protocols, measuring laboratory blanks or using less aggressive chemicals for sample purification. However, the identification process itself in the meaning of a traceable and transparent documentation is hard to find in many research studies.
The presence of plastic debris in the ocean is increasing and several effects in the marine environment have been reported. A great number of studies have demonstrated that microplastics (MPs) adsorb organic compounds concentrating them several orders of magnitude than the levels found in their surrounding environment, therefore they could be potential vectors of these contaminants to biota. However, a consensus on MPs as vectors of persistent organic pollutants (POPs) has not been reached since are opposing views among different researchers on this topic.

Pages