Energy

Energy is a central component of the United Nations' Sustainable Development Goals (SDGs), explicitly reflected in SDG 7: Affordable and Clean Energy. However, the theme of energy cuts across multiple SDGs, demonstrating the interconnectivity of these global goals.

SDG 7's objective is to ensure access to affordable, reliable, sustainable, and modern energy for all. Energy, in its various forms, is a vital driver of economic growth and is pivotal to nearly all aspects of development. Without a steady and reliable supply of energy, societies can hardly progress. However, millions of people around the world still lack access to modern and clean energy services. The emphasis on "affordable and clean" energy within this goal shows the need to transition from traditional energy sources, often characterized by high environmental costs, to more sustainable ones like wind, solar, and hydropower.

Energy's role is also significant in achieving other SDGs. For example, SDG 9: Industry, Innovation, and Infrastructure, emphasizes the need for sustainable and resilient infrastructure with increased resource-use efficiency and greater adoption of clean technologies. It is almost impossible to achieve this without a sustainable energy framework. Similarly, SDG 11: Sustainable Cities and Communities, calls for making cities inclusive, safe, resilient, and sustainable, and one of its targets (11.6) directly refers to the environmental impact of cities, for which energy is a key factor.

Furthermore, energy is a crucial player in SDG 13: Climate Action. The energy sector represents the largest single source of global greenhouse gas emissions. Transitioning to a sustainable energy future, therefore, is critical for tackling climate change. Efforts to reduce emissions and promote clean energy sources are crucial to mitigate climate change and its impacts.

Various studies have shown that maritime sector needs increased use of zero emission vessels in service by 2030 in order to achieve an absolute reduction in CO2 emissions of 50% by 2050 (consistent with a 2 °C pathway). These vessels, with operational emissions containing zero or negligible greenhouse gas share, would need to represent a significant portion of newbuilds from that point onwards.
Advancing SDGs 7 and 13, this article outlines why divesting from fossil fuels makes sense environmentally and financially.
Elsevier,

Introduction to Industrial Energy Efficiency, Energy Auditing, Energy Management, and Policy Issues, 2020, Pages 215-226

This chapter advances SDG 7, 11 and 12 by addressing energy efficiency of heating systems, cooling systems, and hot water systems, examining measures to reduce energy use in these systems.
Elsevier, Cold Fusion: Advances in Condensed Matter Nuclear Science, Volume , 14 January 2020
Long-term electrolysis with a thick Pd electrode in 0.1. M LiOD was performed. Some techniques to conduct clean and stable electrolysis are described. The surface morphology of postelectrolysis Pd electrodes was analyzed: it consisted of holes and two long faults without any crack. To understand the evolution of the morphology, the physicochemical properties of hydrated Pd have been studied by in situ potentiometric, resistance, and dilatometric measurements. The results of microstructural changes were further analyzed with reference to knowledge of hydrogen embrittlement.
Elsevier,

Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction, Wind Energy Engineering, 2020, Pages 75-99

This book chapter addresses SDG 7 by explaining wind forecasting and how hybrid models based on machine learning is improving accuracy.
Global and regional trends indicate that energy demand will soon be covered by a widespread deployment of renewable energy sources. However, the weather and climate driven energy sources are characterized by a significant spatial and temporal variability. One of the commonly mentioned solutions to overcome the mismatch between demand and supply provided by renewable generation is a hybridization of two or more energy sources into a single power station (like wind-solar, solar-hydro or solar-wind-hydro).
This book chapter addresses goals 7, 9, and 13 by reviewing the prospects and constraints for bioenergy development in Africa to ensure sustainable bioenergy production in the future.
Global warming, air pollution, and energy insecurity are three of the greatest problems facing humanity. To address these problems, we develop Green New Deal energy roadmaps for 143 countries. The roadmaps call for a 100% transition of all-purpose business-as-usual (BAU) energy to wind-water-solar (WWS) energy, efficiency, and storage by 2050 with at least 80% by 2030. Our studies on grid stability find that the countries, grouped into 24 regions, can match demand exactly from 2050 to 2052 with 100% WWS supply and storage. We also derive new cost metrics.
Elsevier, Sustainable Materials and Technologies, Volume 22, December 2019
The development of mass-market electric vehicles (EVs) using lithium-ion batteries (LIBs) is helping to propel growth in LIB usage, but end-of-life strategies for LIBs are not well developed. An important aspect of waste LIB processing is the stabilisation of such high energy-density devices, and energy discharge is an obvious way to achieve this. Salt-water electrochemical discharge is often mentioned as the initial step in many LIB recycling studies, but the details of the process itself have not often been mentioned.

Pages