Energy

Energy is a central component of the United Nations' Sustainable Development Goals (SDGs), explicitly reflected in SDG 7: Affordable and Clean Energy. However, the theme of energy cuts across multiple SDGs, demonstrating the interconnectivity of these global goals.

SDG 7's objective is to ensure access to affordable, reliable, sustainable, and modern energy for all. Energy, in its various forms, is a vital driver of economic growth and is pivotal to nearly all aspects of development. Without a steady and reliable supply of energy, societies can hardly progress. However, millions of people around the world still lack access to modern and clean energy services. The emphasis on "affordable and clean" energy within this goal shows the need to transition from traditional energy sources, often characterized by high environmental costs, to more sustainable ones like wind, solar, and hydropower.

Energy's role is also significant in achieving other SDGs. For example, SDG 9: Industry, Innovation, and Infrastructure, emphasizes the need for sustainable and resilient infrastructure with increased resource-use efficiency and greater adoption of clean technologies. It is almost impossible to achieve this without a sustainable energy framework. Similarly, SDG 11: Sustainable Cities and Communities, calls for making cities inclusive, safe, resilient, and sustainable, and one of its targets (11.6) directly refers to the environmental impact of cities, for which energy is a key factor.

Furthermore, energy is a crucial player in SDG 13: Climate Action. The energy sector represents the largest single source of global greenhouse gas emissions. Transitioning to a sustainable energy future, therefore, is critical for tackling climate change. Efforts to reduce emissions and promote clean energy sources are crucial to mitigate climate change and its impacts.

Capacity planners in developing countries frequently use screening curves and other system-independent metrics such as levelized cost of energy to guide investment decisions. This can lead to spurious conclusions about intermittent power sources such as solar and wind whose value may depend strongly on the characteristics of the system in which they are installed, including the overall generation mix and consumption patterns.

Elsevier,

Sustainable Power Technologies and Infrastructure, Chapter 10, 2016, Pages 355–377

This chapter advances both goals 7 (affordable and clean energy) and 9 (industry, innovation and infrastructure) through its discussion of incentives and tariffs that encourage sustainable infrastructure, including renewable energy.
Elsevier, Separation and Purification Technology, Volume 156, 17 December 2015
This short review summarizes our understanding and perspectives on FO and PRO processes and meaningful R&D in order to develop effective and sustainable FO and PRO technologies for water reuse and osmotic power generation.
RX,

World Efficiency Solutions - La Galerie des Solutions, 9 December 2015

The Business Case for Carbon Neutral Cities session was hosted by UNEP and Sustainable Energy for All in collaboration with the Danish Ministry of Foreign Affairs, the Swedish Trade and Invest Council and Empower, the largest district cooling operator in the world. Held at La Galerie des Solutions (by World Efficiency Solutions), an exhibition of climate solutions, that took place during the COP21, in immediate proximity to the negotiations zone.

This paper attempts to investigate the impact of economic growth and CO2 emissions on energy consumption for a global panel of 58 countries using dynamic panel data model estimated by means of the Generalized Method of Moments (GMM) for the period 1990-2012. We also estimate this relationship for three regional panels; namely, from Europe and North Asia, Latin America and Caribbean, and Sub-Saharan, North African and Middle Eastern. The empirical evidence indicates significant positive impact of CO2 emissions on energy consumption for four global panels.

Elsevier,

Energy and Buildings, Volume 103, 15 September 2015

It is well known that there is a need to develop technologies to achieve thermal comfort in buildings lowering the cooling and heating demand. Research has shown that thermal energy storage (TES) is a way to do so, but also other purposes can be pursued when using TES in buildings, such as peak shaving or increase of energy efficiency in HVAC systems. This paper reviews TES in buildings using sensible, latent heat and thermochemical energy storage.

ICIS,

ICIS Special Report, September 2014

Record attempt has solar flair
An idea spawned a decade ago finally becomes a reality as Solar Impulse prepares for the first round-the-world flight by a plane producing zero emissions. Collaboration across several partners has been a key component to developing the materials and design of Solar Impulse. Innovations like this are vital to SDG 7.2 to increase substantially the share of renewable energy in the global energy mix.
This article describes the key challenges and opportunities in modeling and optimization of biomass-to-bioenergy supply chains. It reviews the major energy pathways from terrestrial and aquatic biomass to bioenergy/biofuel products as well as power and heat with an emphasis on "drop-in" liquid hydrocarbon fuels. Key components of the bioenergy supply chains are then presented, along with a comprehensive overview and classification of the existing contributions on biofuel/bioenergy supply chain optimization.

This paper defines the concept of 4th Generation District Heating (4GDH) including the relations to District Cooling and the concepts of smart energy and smart thermal grids. The motive is to identify the future challenges of reaching a future renewable non-fossil heat supply as part of the implementation of overall sustainable energy systems.

Elsevier, Energy Research and Social Science, Volume 1, March 2014
Energy is central to the survival and prosperity of human society, which explains the social sciences' interest in energy production, consumption and distribution. The emergence of the global environmental agenda in the second half of the 20th century gave rise to a distinctive research literature on how energy systems and global environmental protection are interconnected. The threat of disruptive climate change, in particular, has thrown the spotlight on the central role that energy plays in shaping the future relationship between human society and its natural environment.

Pages