Sustainable cities and human settlements

The United Nations Sustainable Development Goal (SDG) 11 aims to "Make cities and human settlements inclusive, safe, resilient, and sustainable." This goal acknowledges the growing importance of urban areas, as it's projected that by 2050, nearly 70% of the world's population will live in cities. Consequently, cities bear significant implications for sustainability, economic growth, and societal wellbeing.

Inclusivity is a key feature of sustainable cities. This refers to equitable access to opportunities, public services, and amenities, regardless of a person's background or circumstances. It implies the availability of affordable and adequate housing, thus addressing issues of homelessness and substandard living conditions.

Safety in cities means ensuring urban environments that protect their inhabitants from both physical harm and psychological distress. This involves addressing crime rates, traffic accidents, and potential hazards from poor infrastructure, while also considering the impacts of noise, pollution, and overcrowdedness on mental health.

Resilience is another important aspect, particularly in the face of climate change. Resilient cities can withstand and quickly recover from shocks such as natural disasters or economic crises. This involves aspects such as resilient infrastructure, disaster risk reduction strategies, and adaptive capacities at the community level.

Sustainability, finally, requires cities to function in a way that doesn't compromise future generations' ability to meet their own needs. This includes sustainable urban planning to reduce environmental impact, promote energy efficiency, and conserve resources. It also considers the importance of green spaces for biodiversity and the wellbeing of urban residents.

SDG 11 is interconnected with many other SDGs. For example, sustainable urban transport systems contribute to SDG 13 (Climate Action) by reducing greenhouse gas emissions. Meanwhile, ensuring access to green and public spaces supports SDG 3 (Good Health and Well-being).

Achieving sustainable cities and human settlements requires cooperation and participation from various stakeholders, including government authorities, urban planners, businesses, and citizens. Through their collective efforts, cities can be transformed into hubs of sustainability, resilience, and inclusivity, contributing significantly towards the realization of the SDGs.

Transportation geotechnics associated with constructing and maintaining properly functioning transportation infrastructure is a very resource intensive activity. Large amounts of materials and natural resources are required, consuming proportionately large amounts of energy and fuel. Thus, the implementation of the principles of sustainability is important to reduce energy consumption, carbon footprint, greenhouse gas emissions, and to increase material reuse/recycling, for example.

Background Physical inactivity is a global pandemic responsible for over 5 million deaths annually through its effects on multiple non-communicable diseases. We aimed to document how objectively measured attributes of the urban environment are related to objectively measured physical activity, in an international sample of adults. Methods We based our analyses on the International Physical activity and Environment Network (IPEN) adult study, which was a coordinated, international, cross-sectional study.
Achieving SDG 11 will require new technologies and innovations to be deployed in the real-estate sector. Already blockchain and artificial intelligence form the foundations of smart buildings, using data on residents' personal preferences to be able to improve efficiency and comfort. This article explores the different technologies and innovations that provide significant untapped potential in the real estate sector.
Studies of waste-to-energy systems have applied a varying range of indicators to assess their sustainability. The sets of indicators prescribed were often based on the respective context and are therefore of varying emphasis. Through a literature review, this research aims to develop a framework of sustainability indicators that can serve as a reference for future research in waste-to-energy systems. Sustainability indicators and their underlying factors from the three pillars of sustainability were consolidated and structured under a proposed framework.
Public rental housing (PRH) projects are the mainstream of China's new affordable housing policies, and their integrated sustainability has a far-reaching effect on medium-low income families' well-being and social stability. However, there are few quantitative researches on the integrated sustainability of PRH projects. Our study tries to fill this gap through proposing an assessment model of the integrated sustainability for PRH projects. First, this paper defines what the sustainability of a PRH project is.
Elsevier, Environmental Science and Policy, Volume 58, April 01, 2016
This paper investigates how the notion of 'sustainability' is strategically framed in the context of Dutch infrastructure governance in the Netherlands. By conducting a frame analysis (based on policy documents, websites and semi-structured interviews), the paper discerns six sustainability frames. These frames concern substantive (e.g., more focus on ecology), process (activating new networks) and organizational (e.g., new practices of work) aspects.
Key strategies to low energy buildings
Occupant behavior is one of the major factors influencing building energy consumption and contributing to uncertainty in building energy use prediction and simulation. Currently the understanding of occupant behavior is insufficient both in building design, operation and retrofit, leading to incorrect simplifications in modeling and analysis. This paper introduced the most recent advances and current obstacles in modeling occupant behavior and quantifying its impact on building energy use.
Elsevier,

Energy and Buildings, Volume 116, 15 March 2016

The smart grid's components

The smart grids are modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability. The role of buildings in this framework is very crucial. This paper addresses critical issues on smart grid technologies and the integration of buildings in this new power grid framework.

Elsevier, Building and Environment, Volume 97, February 15, 2016
Heat map of simulated annual heating demand for South Boston using UMI (a) and daily gas and electricity demand profiles for the highlighted building in South Boston (b).
Over the past decades, detailed individual building energy models (BEM) on the one side and regional and country-level building stock models on the other side have become established modes of analysis for building designers and energy policy makers, respectively. More recently, these two toolsets have begun to merge into hybrid methods that are meant to analyze the energy performance of neighborhoods, i.e. several dozens to thousands of buildings. This paper reviews emerging simulation methods and implementation workflows for such bottom-up urban building energy models (UBEM).
Membrane (bio)fouling is a major obstacle to many separation and purification processes. Due to the inherent physicochemical properties of some thin film composite membrane surfaces such as polyamide, these are prone to (bio)fouling. Hence, this review highlights recent advances in the design and development of highly resistant thin film composite membrane through surface modification by either coating or grafting with antifouling polymers and/or antimicrobial polymers/biocidal inorganic nanoparticles.

Pages