Biodiversity and ecosystems

Biodiversity and ecosystems, encompassing the vast variety of life on Earth and the natural systems they inhabit, are fundamental to the Sustainable Development Goals (SDGs). Their importance is acknowledged explicitly in several SDGs due to their critical role in maintaining environmental balance and supporting human life and well-being.

SDG 14 (Life Below Water) and SDG 15 (Life on Land) are directly focused on the conservation and sustainable use of aquatic and terrestrial ecosystems, respectively. These goals recognize the intrinsic value of biodiversity and the vital services ecosystems provide, such as habitat for wildlife, carbon sequestration, and soil formation. The preservation and restoration of ecosystems like forests, wetlands, and coral reefs are essential for maintaining biodiversity, which in turn supports ecological resilience and the sustenance of human life.

The role of biodiversity and ecosystems in achieving SDG 2 (Zero Hunger) is significant. The variety of life forms, including plants, animals, and microorganisms, underpins agricultural productivity. Pollinators, soil organisms, and genetic diversity of crops are all crucial for food production and agricultural resilience. Ecosystems support agriculture not just in terms of crop yield but also in sustaining the natural resources like soil and water, upon which agriculture depends.

Similarly, SDG 6 (Clean Water and Sanitation) is closely tied to the health of ecosystems. Natural habitats such as forests and wetlands play a key role in filtering and purifying water, maintaining the water cycle, and regulating water flow. This natural filtration process is vital for providing clean drinking water and supporting sanitation systems.

Biodiversity and ecosystems are also crucial for SDG 3 (Good Health and Well-being). Natural environments regulate diseases by supporting a balance among species that, in turn, can control pest and disease outbreaks. Additionally, a vast number of medical discoveries, including medicines and treatments, have their origins in biological resources, underscoring the potential of biodiversity in contributing to human health and well-being.

Moreover, biodiversity and ecosystems play a significant role in addressing climate change, linking to SDG 13 (Climate Action). Ecosystems such as forests and oceans are major carbon sinks, absorbing and storing carbon dioxide from the atmosphere. Protecting and restoring these ecosystems are vital strategies for climate change mitigation. Additionally, healthy ecosystems provide crucial services for climate change adaptation, such as protecting against extreme weather events and helping communities adjust to changing environmental conditions.

However, achieving these goals requires addressing threats to biodiversity and ecosystems, such as habitat destruction, pollution, overfishing, and invasive species. It also involves balancing the needs of human development with environmental conservation, ensuring sustainable use of natural resources.

Biodiversity and ecosystems are integral to achieving multiple SDGs. Their conservation and sustainable use not only benefit the environment but are essential for food security, water purity, human health, and combating climate change. The protection and restoration of biodiversity and ecosystems are therefore crucial steps towards sustainable development and ensuring the well-being of current and future generations.

Elsevier, Ocean and Coastal Management, Volume 171, 1 April 2019
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 113, April 2019
Although the study of the effects of microplastics increased in the last years, terrestrial ecosystems remain less studied. In fact, the effects of microplastics in insects, the most abundant group of animals and major providers of key Ecosystem Services, are not well known despite the potential cascading negative effects on the ecosystems functioning in the habitats where they occur.
Tire materials are a significant proportion of the (micro)plastics in the environment that until today have been clearly overlooked. These materials are released into the environment, either unintentionally as an abrasion product from tire wear, that reaches the environment via road runoff, or intentionally as, for example, shredded “tire crumble rubber” used as filling material for playgrounds.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 113, April 2019
Microplastic (MP) studies in freshwater environments are gaining attention due to the huge quantities of plastic particles reported from lakes and rivers and the potential for negative impacts in these environments. Different units have been used to report MP densities, which makes it difficult to compare data and can result in reports of extremely high concentrations that do not reflect the original sample size. We recommended that the density of MPs from bulk samples be reported as number L −1 , while density from net samples should be reported as number m −3 .
Plastic pollution is a global problem since 2016 when its production reached 322 million tonnes, excluding fibers. Daily discharges of microplastics (MPs, defined as
Elsevier,

Freshwater Ecology, Third Edition, Aquatic Ecology, 2020, Pages 295-333

This book chapter advances SDG 14 by discussing measures of freshwater species diversity and how and why diversity varies among and within habitats. Also discussed are extinctions caused by humans and some of the associated consequences, as well as consequences of invasive species.
This book chapter addresses goals 9, 12 and 15 by looking at how green nanotechnology can facilitate sustainable methods leading to reduced environmental impacts, improved conservation, and the protection of resources and human health.
This book chapter addresses goals 12, 7, 11 and 15 by looking at the environmental and economic impact of the utilization of biomass resources.
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 112, March 2019
High amounts of macro and microplastic have been reported in rivers, lakes and seas. However, links between the observed pollution and their sources remain unclear. This study aims to clarify these links in the Lake Geneva basin by analysing each step of the local plastic life cycle. Two distinct approaches have been compared: (i) a top-down approach based on modelling socio-economic activities, plastic losses and releases into the lake, and, (ii) a bottom-up approach based on extrapolating plastic flows into the lake based on field measurements from 6 different pathways.
Elsevier,

TrAC - Trends in Analytical Chemistry, Volume 112, March 2019

Plastics are a frequently observed component of marine debris and there is growing concern about microplastic (MP) ecotoxicity, and the impacts of additives, sorbed hazardous organic contaminants, heavy metals, and biofilm on MP surfaces. The relative importance of MP from different terrestrial and freshwater sources is poorly understood and limits our ability to develop best management practices.

Pages