Biodiversity and ecosystems

Biodiversity and ecosystems, encompassing the vast variety of life on Earth and the natural systems they inhabit, are fundamental to the Sustainable Development Goals (SDGs). Their importance is acknowledged explicitly in several SDGs due to their critical role in maintaining environmental balance and supporting human life and well-being.

SDG 14 (Life Below Water) and SDG 15 (Life on Land) are directly focused on the conservation and sustainable use of aquatic and terrestrial ecosystems, respectively. These goals recognize the intrinsic value of biodiversity and the vital services ecosystems provide, such as habitat for wildlife, carbon sequestration, and soil formation. The preservation and restoration of ecosystems like forests, wetlands, and coral reefs are essential for maintaining biodiversity, which in turn supports ecological resilience and the sustenance of human life.

The role of biodiversity and ecosystems in achieving SDG 2 (Zero Hunger) is significant. The variety of life forms, including plants, animals, and microorganisms, underpins agricultural productivity. Pollinators, soil organisms, and genetic diversity of crops are all crucial for food production and agricultural resilience. Ecosystems support agriculture not just in terms of crop yield but also in sustaining the natural resources like soil and water, upon which agriculture depends.

Similarly, SDG 6 (Clean Water and Sanitation) is closely tied to the health of ecosystems. Natural habitats such as forests and wetlands play a key role in filtering and purifying water, maintaining the water cycle, and regulating water flow. This natural filtration process is vital for providing clean drinking water and supporting sanitation systems.

Biodiversity and ecosystems are also crucial for SDG 3 (Good Health and Well-being). Natural environments regulate diseases by supporting a balance among species that, in turn, can control pest and disease outbreaks. Additionally, a vast number of medical discoveries, including medicines and treatments, have their origins in biological resources, underscoring the potential of biodiversity in contributing to human health and well-being.

Moreover, biodiversity and ecosystems play a significant role in addressing climate change, linking to SDG 13 (Climate Action). Ecosystems such as forests and oceans are major carbon sinks, absorbing and storing carbon dioxide from the atmosphere. Protecting and restoring these ecosystems are vital strategies for climate change mitigation. Additionally, healthy ecosystems provide crucial services for climate change adaptation, such as protecting against extreme weather events and helping communities adjust to changing environmental conditions.

However, achieving these goals requires addressing threats to biodiversity and ecosystems, such as habitat destruction, pollution, overfishing, and invasive species. It also involves balancing the needs of human development with environmental conservation, ensuring sustainable use of natural resources.

Biodiversity and ecosystems are integral to achieving multiple SDGs. Their conservation and sustainable use not only benefit the environment but are essential for food security, water purity, human health, and combating climate change. The protection and restoration of biodiversity and ecosystems are therefore crucial steps towards sustainable development and ensuring the well-being of current and future generations.

Conservation of biodiversity and ecosystem services in natural environments requires careful management choices. However, common methods of evaluating the impact of conservation interventions can have contextual shortcomings. Here, we make a call for counterfactual thinking—asking the question “what would have happened in the absence of an intervention?”—with the support of rigorous evaluation approaches and more thoughtful consideration of human dimensions and behavior.

Background: Synthetic biology is an emerging multidisciplinary area of research with the potential to deliver various novel agrifood applications. Its long-term adoption and commercialisation will depend on the extent to which the public accept synthetic biology and its different applications. Scope and approach: A mapping review of existing research on public perceptions of, and attitudes towards, synthetic biology and its applications to agriculture and food production was conducted.

Manual chamber-based measurements of CO2 (and H2O) fluxes are important for understanding ecosystem carbon metabolism. Small opaque chambers can be used to measure leaf, stem and soil respiration. Larger transparent chambers can be used to measure net ecosystem exchange of CO2, and small jars often serve this purpose for laboratory incubations of soil and plant material. We developed an Android application (app), called Flux Puppy, to facilitate chamber-based flux measurements in the field and laboratory.
Elsevier,

Damia Barcelo and Thomas Knepper, TrAC Trends in Analytical Chemistry, 30 July 2019

This microplastics special issue compiled by Trends in Analytical Chemistry supports many of the SDGs, namely SDGs 3 (good health and well-being), 9.5 (enhance scientific research), 12 (responsible consumption and production), 14 (life below water) and 15 (life on land).
Elsevier, TrAC - Trends in Analytical Chemistry, Volume 116, July 2019
For seventy years, mass plastic production and waste mismanagement have resulted in huge pollution of the environment, including the marine environment. The first mention of seafood contaminated by microplastics was recorded in the seventies, and to date numerous studies have been carried out on shellfish, fish and crustaceans. Based on an ad hoc corpus, the current review aims to report on the numerous practices and methodologies described so far.

To fight against the biodiversity loss and to take advantage of ecosystem services that nature can offer, urban planners integrate green spaces in urban projects. However to assess green spaces, attention is generally paid to local biodiversity (i.e. “in situ”)which concerns the plot on which buildings are constructed. The biodiversity impacted outside the construction site (i.e. “ex situ”)which concerns the extraction of materials, transportation and waste, is rarely associated to the project assessment.

Irrigation management may influence soil greenhouse gas emissions (GHG). Solid-set sprinkler irrigation systems allow to modify the irrigation time and frequency. The objective of this study was to quantify the effect of two irrigation times (daytime, D; nighttime, N)and two irrigation frequencies (low, L; high, H)on soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)emissions in a solid-set sprinkler-irrigated maize (Zea mays L.)field located in NE Spain during 2015 and 2016 growing seasons and the fallow period between growing seasons.

Elsevier, the global information and analytics business specializing in science and health, is making over 5,000 subscription articles on climate change freely available for a test period. The articles contribute knowledge to advance Goal 13, Climate Action and are available through Mendeley, the reference manager and academic social network.
Elsevier, Current Opinion in Environmental Sustainability, Volume 38, June 2019
A growing movement of conservationists proposes to stem biodiversity losses by setting aside half of Earth's land as an interconnected global conservation reserve. As the largest land governance proposal in history, Half Earth engages with some of the wickedest challenges in land system science. How best to allocate and manage Earth's land to maximize biodiversity conservation in the face of competing demands for food, housing and other human needs? Can half of Earth's land be reallocated and governed fairly and equitably in ways that honor the rights of vulnerable populations?
Insect populations are declining even in protected areas, but the underlying causes are unclear. Here, I consider whether the factors driving the loss of insect diversity include invasive and/or introduced insects transmitting pathogens to less-resistant native species. The introduction of insects into new areas for biocontrol, to promote pollination, or for mass rearing in insect farms, threatens the health and diversity of indigenous insects by the co-introduction of entomopathogens whose spillover is difficult to control.

Pages