Biodiversity and ecosystems

Biodiversity and ecosystems, encompassing the vast variety of life on Earth and the natural systems they inhabit, are fundamental to the Sustainable Development Goals (SDGs). Their importance is acknowledged explicitly in several SDGs due to their critical role in maintaining environmental balance and supporting human life and well-being.

SDG 14 (Life Below Water) and SDG 15 (Life on Land) are directly focused on the conservation and sustainable use of aquatic and terrestrial ecosystems, respectively. These goals recognize the intrinsic value of biodiversity and the vital services ecosystems provide, such as habitat for wildlife, carbon sequestration, and soil formation. The preservation and restoration of ecosystems like forests, wetlands, and coral reefs are essential for maintaining biodiversity, which in turn supports ecological resilience and the sustenance of human life.

The role of biodiversity and ecosystems in achieving SDG 2 (Zero Hunger) is significant. The variety of life forms, including plants, animals, and microorganisms, underpins agricultural productivity. Pollinators, soil organisms, and genetic diversity of crops are all crucial for food production and agricultural resilience. Ecosystems support agriculture not just in terms of crop yield but also in sustaining the natural resources like soil and water, upon which agriculture depends.

Similarly, SDG 6 (Clean Water and Sanitation) is closely tied to the health of ecosystems. Natural habitats such as forests and wetlands play a key role in filtering and purifying water, maintaining the water cycle, and regulating water flow. This natural filtration process is vital for providing clean drinking water and supporting sanitation systems.

Biodiversity and ecosystems are also crucial for SDG 3 (Good Health and Well-being). Natural environments regulate diseases by supporting a balance among species that, in turn, can control pest and disease outbreaks. Additionally, a vast number of medical discoveries, including medicines and treatments, have their origins in biological resources, underscoring the potential of biodiversity in contributing to human health and well-being.

Moreover, biodiversity and ecosystems play a significant role in addressing climate change, linking to SDG 13 (Climate Action). Ecosystems such as forests and oceans are major carbon sinks, absorbing and storing carbon dioxide from the atmosphere. Protecting and restoring these ecosystems are vital strategies for climate change mitigation. Additionally, healthy ecosystems provide crucial services for climate change adaptation, such as protecting against extreme weather events and helping communities adjust to changing environmental conditions.

However, achieving these goals requires addressing threats to biodiversity and ecosystems, such as habitat destruction, pollution, overfishing, and invasive species. It also involves balancing the needs of human development with environmental conservation, ensuring sustainable use of natural resources.

Biodiversity and ecosystems are integral to achieving multiple SDGs. Their conservation and sustainable use not only benefit the environment but are essential for food security, water purity, human health, and combating climate change. The protection and restoration of biodiversity and ecosystems are therefore crucial steps towards sustainable development and ensuring the well-being of current and future generations.

Elsevier, TrAC - Trends in Analytical Chemistry, Volume 110, January 2019
Microplastics are widespread contaminants, virtually present in all environmental compartments. However, knowledge on sources, fate and environmental concentration over time and space still is limited due to the laborious and varied analytical procedures currently used. In this work we critically review the methods currently used for sampling and detection of microplastics, identifying flaws in study design and suggesting promising alternatives.
Plastics entering the environment will persist and continue to degrade and fragment to smaller particles under the action of various environmental factors. These microplastics (MP) and nanoplastics (NP) are likely to pose a higher environmental impact, as well as they are more prone to adsorb organic contaminants and pathogens from the surrounding media, due to their higher surface area to volume ratio. Little known on their characteristics, fragmentation, distribution and impact on freshwater ecosystems.
Degrowth scholars and activists have convincingly argued that degrowth in developed nations will need to be part of a global effort to tackle climate change, and to preserve the conditions for future generations’ basic needs satisfaction. However, the barriers to building a broader degrowth movement appear to be very entrenched at present. To improve the political feasibility of degrowth it is important to better understand these structural obstacles and develop arguments and strategies to address them.
Although the effects of nitrogen (N) fertilization on soil microflora have been well studied, the effects should be verified across soil types and N-added levels. To understand the impacts of N fertilization on shifts in soil biological traits and bacterial communities and to further explore the coupling mediation of these parameters with respect to crop yields, we sampled soils from three experimental sites (each site received three levels of N fertilization (0, 168 and 312 kg N ha−1)) that share the same climatic conditions but have different soil types (clay, alluvial and sandy soils).
Elsevier,

TrAC - Trends in Analytical Chemistry, Volume 110, January 2019

This review provides insight into the abundance, origin, distribution and composition of MPs in the sea surface and water column of the Mediterranean Sea. Literature data on MP particles on the sea surface showed an evident heterogeneous distribution and composition, with marked geographical differences between Mediterranean sub-basins. A standardized protocol for water sampling, extraction and detection of plastic debris is strongly recommended.

Elsevier,

Coasts and Estuaries: The Future, Volume , 31 January 2019

Bivalve habitats were once a dominant ecosystem in temperate and subtropical estuaries worldwide. While bivalve habitats are greatly reduced from their former abundance, remnant, and restored populations have been shown to provide a suite of important ecosystems services including improving water quality, coastal protection, and providing fisheries nursery habitat, in addition to providing a direct food value.

Elsevier,

Emerging and Reemerging Viral Pathogens, Volume 1: Fundamental and Basic Virology Aspects of Human, Animal and Plant Pathogens, 2020, Pages 53-68

The current availability of state-of-the-art genomic technologies such as pan-microbial microarrays and NGS provides an unprecedented opportunity to “cast a wide net” and surveys the full breadth of as-yet undiscovered pathogens in nature that pose significant threats to human health.
Elsevier,

Sustainable Food Supply Chains: Planning, Design, and Control through Interdisciplinary Methodologies, 2019, Pages 249-260

This book chapter addresses goals 2 and 12 by analysing food systems sustainability through the lens of the interrelated implications and impacts of FLW on production and consumption.
Water-quality disasters occur frequently worldwide and do not necessarily occur only in underdeveloped world. Detailed water-quality evaluations can help prevent occurrence of some of these disasters.This book chapter addresses goals 3, 6 and 14 by discussing our vulnerability to water disasters to help us avoid some of them in the future.
This book chapter addresses goals 6, 9, and 12 and 14 by presenting the feasibility of traditional and nature-based in situ treatment processes for beverage effluents addressing the environmental problems associated with its management and providing the relevant socioeconomic and environmental values.

Pages