Sustainable consumption and production

Sustainable consumption and production (SCP) is at the core of the United Nations Sustainable Development Goals (SDGs), specifically addressed by SDG 12. This goal aims to "ensure sustainable consumption and production patterns," acting as a cross-cutting theme that feeds into other SDGs such as those related to climate change, poverty, health, and sustainable cities.

SCP involves using services and products in a way that minimizes environmental damage, preserves natural resources, and promotes social equity. The purpose is to decouple economic growth from environmental degradation, which means pursuing economic development in a way that can be sustained by the planet over the long term. SCP requires changes at all levels of society, from individuals to businesses to governments.

At the individual level, SCP implies making lifestyle choices that reduce environmental impact. This might include reducing, reusing, and recycling waste, choosing products with less packaging, and opting for more sustainable forms of transport like cycling or public transport.

For businesses, SCP entails adopting sustainable business models and practices. This could include improving resource efficiency, investing in renewable energy, designing products that are durable and recyclable, and ensuring fair labor practices.

At the government level, SCP involves implementing policies that support sustainable business practices and incentivize sustainable consumer behavior. This might involve regulations to reduce pollution, subsidies for renewable energy, and campaigns to raise awareness about sustainable consumption.

SCP also plays a role in several other SDGs. For example, sustainable production practices can help mitigate climate change (SDG 13) by reducing greenhouse gas emissions. Additionally, by reducing the pressure on natural resources, SCP supports the goals related to life below water (SDG 14) and life on land (SDG 15).

While progress has been made in certain areas, challenges remain in achieving the shift towards SCP. These include existing patterns of overconsumption, limited awareness about the impacts of consumption, and the need for technological innovation to enable more sustainable production.

This book chapter addresses goals 9 and 12 by describing recycling methods including primary, mechanical, chemical and quaternary, to create new valuable products from plastic wastes and keep them out of landfill.
Elsevier, Sustainable Materials and Technologies, Volume 22, December 2019
Elsevier, Sustainable Materials and Technologies, Volume 22, December 2019
The development of mass-market electric vehicles (EVs) using lithium-ion batteries (LIBs) is helping to propel growth in LIB usage, but end-of-life strategies for LIBs are not well developed. An important aspect of waste LIB processing is the stabilisation of such high energy-density devices, and energy discharge is an obvious way to achieve this. Salt-water electrochemical discharge is often mentioned as the initial step in many LIB recycling studies, but the details of the process itself have not often been mentioned.
The utilization of existing metallurgical infrastructure and integration of secondary process streams into primary metals production can provide advantages over separate recycling plants. This paper focuses on the integration of a pregnant leach solution (PLS) into a nickel production plant that contains Ni, Co, Zn, Mn, Fe, Al and Cd ions, derived from a NiMH recycling stream.
Identification of methodologies for recycling laminated glass, especially the interlayer film, and their contextualization within the glass recycling field implicated an extensive patent search. During the last decade the technology centre L'Urederra exploited a methodology for recycling the poly-vinyl-butyral to be reused as interlayer in windscreens. Subsequent rounds of patents selection were aimed at identifying equivalent or innovative methodologies.
Elsevier,

Renewable and Sustainable Energy Reviews, Volume 116, December 2019

Nepal has been suffering from a serious energy crisis for decades. It has severely affected its economic, social and political developments. Owing to the continuously evolving energy situation in Nepal, and the recent progress in renewable energy technologies, this study aims to provide an up to date perspective on the current energy crisis in Nepal. In particular, the current energy production and consumption profiles are reviewed, and the main factors contributing to a widening gap between the energy supply and demand are identified.

Elsevier,

Current Opinion in Food Science, Volume 30, December 2019

Enteric viruses are an important food safety concern and have been associated with many foodborne disease outbreaks. Norovirus and Hepatitis A virus have been implicated in majority of outbreaks; however, other foodborne viruses such as Hepatitis E virus, Sapovirus and Rotavirus can also present a risk to humans. Viral foodborne disease outbreaks have typically been associated with foods served raw including shellfish, fruits and vegetables. The contamination of food by viruses can occur anywhere in the supply chain.

Elsevier, Journal of Functional Foods, Volume 62, November 2019
Aquaculture and animal rearing for meat has increased exceedingly to meet the demands of ever-increasing population. Utilizing small fishes and agricultural products for feed production will lead to over exploitation of the resources and competition with food respectively. Microalgae can be next alternate source for animal and aquatic feed production in an environmentally sustainable and economically advantageous manner.
Approximately 70% of the aquatic-based production of animals is fed aquaculture, whereby animals are provided with high-protein aquafeeds. Currently, aquafeeds are reliant on fish meal and fish oil sourced from wild-captured forage fish. However, increasing use of forage fish is unsustainable and, because an additional 37.4 million tons of aquafeeds will be required by 2025, alternative protein sources are needed.
Elsevier, Current Research in Food Science, Volume 1, November 2019
The effectiveness of active packaging systems with green tea extract and oregano essential oil was checked for their use in sliced cooked ham. Three packaging systems were evaluated: i) control group without active film, ii) ATGT packed with active film of green tea extract (1%) and iii) ATRX with a mixture of green tea extract and oregano essential oil (1%). The evolution of microbiological, physicochemical (pH, aw, colour and lipid oxidation) and sensory attributes were analysed after 0, 7, 14 and 21 days of refrigerated storage.

Pages