Sustainable consumption and production

Sustainable consumption and production (SCP) is at the core of the United Nations Sustainable Development Goals (SDGs), specifically addressed by SDG 12. This goal aims to "ensure sustainable consumption and production patterns," acting as a cross-cutting theme that feeds into other SDGs such as those related to climate change, poverty, health, and sustainable cities.

SCP involves using services and products in a way that minimizes environmental damage, preserves natural resources, and promotes social equity. The purpose is to decouple economic growth from environmental degradation, which means pursuing economic development in a way that can be sustained by the planet over the long term. SCP requires changes at all levels of society, from individuals to businesses to governments.

At the individual level, SCP implies making lifestyle choices that reduce environmental impact. This might include reducing, reusing, and recycling waste, choosing products with less packaging, and opting for more sustainable forms of transport like cycling or public transport.

For businesses, SCP entails adopting sustainable business models and practices. This could include improving resource efficiency, investing in renewable energy, designing products that are durable and recyclable, and ensuring fair labor practices.

At the government level, SCP involves implementing policies that support sustainable business practices and incentivize sustainable consumer behavior. This might involve regulations to reduce pollution, subsidies for renewable energy, and campaigns to raise awareness about sustainable consumption.

SCP also plays a role in several other SDGs. For example, sustainable production practices can help mitigate climate change (SDG 13) by reducing greenhouse gas emissions. Additionally, by reducing the pressure on natural resources, SCP supports the goals related to life below water (SDG 14) and life on land (SDG 15).

While progress has been made in certain areas, challenges remain in achieving the shift towards SCP. These include existing patterns of overconsumption, limited awareness about the impacts of consumption, and the need for technological innovation to enable more sustainable production.

An Ultra-High Performance Liquid Chromatography combined with Time-of-Flight Mass Spectrometry (UHPLC–ToF-MS) method has been developed for determination of nine mycotoxins, namely aflatoxins (AFB1, AFB2, AFG1 and AFG2), ochratoxin A (OTA), zearalenone (ZEA), toxin T2 (T2) and fumonisins (FB1 and FB2) in maize. The method included a two-step extraction with acetonitrile 80% (v/v). After optimization, the analytical method was validated. The different concentrations tested take in account the Maximum Levels (ML) for maize (Commission Regulation EC no.
This book chapter addresses goals 7, 12, 13 and 14 by describing the fundamental issues of microalgae and their cultivation as a biofuel and alternative food source.
Soiling consists of the deposition of contaminants onto photovoltaic (PV) modules or mirrors and tubes of concentrated solar power systems (CSPs). It often results in a drastic reduction of power generation, which potentially renders an installation economically unviable and therefore must be mitigated. On the other hand, the corresponding costs for cleaning can significantly increase the price of energy generated. In this work, the importance of soiling is assessed for the global PV and CSP key markets.
Agricultural wastes are readily available in farming communities and can be utilised for off-grid electrification as an alternative to diesel generators. This work evaluates for the first time the life cycle environmental sustainability of these small-scale systems in the context of Southeast Asia. Rice and coconut residues are considered for direct combustion and gasification, and livestock manure for anaerobic digestion. Overall, anaerobic digestion is the best option for 14 out of 18 impacts estimated through life cycle assessment.
Electricity systems based on renewables have an increasing demand for flexibility. This paper considers the potential of power-to-gas to provide flexibility and enhance system integration of renewables. Existing research on power-to-gas typically analyses the system effects of a predetermined power-to-gas unit without endogenising the investment decision. Moreover, insights related to market and portfolio effects of power-to-gas are rare. To this end this work presents a stochastic electricity market model.
Elsevier, Renewable and Sustainable Energy Reviews, Volume 113, October 2019
Accurate health estimation and lifetime prediction of lithium-ion batteries are crucial for durable electric vehicles. Early detection of inadequate performance facilitates timely maintenance of battery systems. This reduces operational costs and prevents accidents and malfunctions. Recent advancements in “Big Data” analytics and related statistical/computational tools raised interest in data-driven battery health estimation. Here, we will review these in view of their feasibility and cost-effectiveness in dealing with battery health in real-world applications.
This report showcases business leadership on climate action aligned with limiting global temperature rise to 1.5°C. Advancing SDGs 12, 13 and 17, this report features solutions and strategies developed by companies that have taken the 1.5°C pledge and examines how business leaders are integrating this process into corporate strategies and generating employee buy-in.
Focussing on SDGs 9 (industry, innovation and infrastructure) and 11 (sustainable cities and communities), BEYOND 2020 endeavours to link the built environment sector to the SDGs.
Elsevier, Measurement: Journal of the International Measurement Confederation, Volume 143, September 2019
With the advantages of reducing CO2 emissions and improving the sustainability of supply chain, returnable containers have been widely used in logistics processes. This paper considers a returnable containers supply chain that consists of a single vendor and multiple buyers. To minimize the total cost of the system and balance the containers flow, we assume that the buyers can invest in employee training to reduce the loss fraction of returnable containers.
Waste multilayer ceramic capacitors (MLCCs), containing BaTiO 3 , Ag, Pd, Ni and Sn etc., are valuable secondary resource. The existing recycling process has great challenges when considering environmentally friendly and efficient separation and recovery of resources. From a new perspective of resource recycling, we directly utilized the complex components of waste MLCCs as a Nb–Pb codoped and Ag-Pd-Sn-Ni loaded BaTiO 3 nano-photocatalyst through one-step ball milling process. The as-prepared photocatalyst exhibited superior photocatalytic performance.

Pages